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1. Introduction 

This report describes new vacuum-assisted resin transfer molding (VARTM) polymer matrix 
composite fabrication processes developed at the U.S. Army Research Laboratory (ARL).  The 
processes were developed in response to the perceived need to be able to control the thickness 
and reinforcement fiber volume fraction (Vf) of composites for a variety of applications. 
Conventional VARTM processes such as Seeman’s Composite Resin Infusion Molding Process1 
(SCRIMP) do not offer adequate control of these parameters.  Moreover, SCRIMP frequently 
results in composites with fiber content gradients.  A brief discussion of SCRIMP as practiced at 
ARL is presented in the appendix. 

The first of the new processes, described in section 2 of this report, is known as “Vmin”2 since it 
was developed as a variation on SCRIMP that allows composites with relatively low values of 
fiber volume fraction (typically under 50 volume % glass) to be made.  The desire for such a 
process arose during an effort to fabricate a large number of polyurethane resin based panels 
with low fiber content for high flexibility.  The panels were made by hand, which required many 
precautions, and resulted in a product with large variations in thickness and general quality. 

More generally, it is desirable to have a composite fabrication process that uses low cost tooling 
that allows the processor to:   

1. control fiber volume percentage from 35% to 60%,  

2. control the thickness of the part, 

3. obtain good uniformity through the thickness of the part, 

4. process large area parts rapidly, 

5. process with viscous or very fast curing resins, 

6. obtain a good surface finish, 

7. generate a minimum of waste, and 

8. turn off the vacuum system and walk away when the part is filled, with no circulation of 
resin through the part or removal of resin required. 

                                                 
1Seeman, W. H.  Plastic Transfer Molding Techniques for the Production of Fiber Reinforced Plastic Structures, U.S. Patent 

No. 4,902,215, 20 February 1990. 
2Rigas, E.; Spurgeon, W. A.; Walsh, S.  Fabrication of Composite Skirts for Tracked Vehicles Using FASTRAC Processing 

Techniques; ARL-TR-2868; U.S. Army Research Laboratory:  Aberdeen Proving Ground, MD, 2002. 
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A detailed analysis of SCRIMP pointed the way to a process that meets these objectives.  This 
new process, volume control VARTM, is described in section 3 of this report. 

2. Vmin 

2.1 Background 

Composites made by standard vacuum bag methods, using typical reinforcement fabrics and 
either wet resin lay-ups or prepreg technology, will usually contain about 50% fiber by volume.  
These vacuum bag methods are not satisfactory for making a composite with a lower volume 
fraction of reinforcement fiber.  However, ARL experience has shown that adding a large excess 
of resin to a wet resin or prepreg lay-up generally results in a poor quality part that is hard to 
reproduce and that typically has a high void content.  Some control over the fiber volume 
fraction can be obtained by using a fabric with a different weave pattern such as a 0–90-stitched 
fabric or a chopped strand mat as opposed to a plain weave fabric.  It is not always possible or 
desirable to change fabric style, however. 

VARTM or variations on this process, such as SCRIMP, result in a fiber volume fraction 
determined by the applied pressure and the weave of the fabric.  The degree of control over the 
fiber volume and part thickness obtained by methods that do not use a mold is minimal, however.  
Resin transfer molding is often an alternative to vacuum bag methods.  The volume fraction of 
fiber in a composite part made by this method can be controlled by the amount of compression 
the mold provides to the dry fabric.  The mold also determines the part thickness.  However, this 
process requires a relatively expensive closed mold, which could be an unacceptable expense if 
only a few parts are needed.  If composites with a low volume fraction of reinforcement fiber are 
needed, a simple, reliable method of fabricating them is clearly desirable. 

2.2 The Vmin Process 

Vmin employs VARTM or variations on this process, such as SCRIMP, to fill the part with 
resin.  For a flat panel, the reinforcement fabrics are first cut slightly (typically 0.5 to 1 in) larger 
than the desired part size.  Referring to figure 1, the desired number of plies of cut fabrics (2) are 
then stacked on a rigid bottom plate (1), which is typically metal.  Rigid supports (or spacers) 
(3), also typically metal, are placed along two opposite sides of the fabric stack.  One or more 
plies of a porous release fabric (hidden under item 4) and a layer of distribution medium (4), cut 
no larger than the fabrics, may then be placed on top of the fabric stack, as in SCRIMP.  A fill 
line (5) is placed on one of the unsupported sides and a suitable vacuum line (6) is placed on the 
other.  A rigid cover plate (not shown), typically metal, that is wider than the fabrics and just 
slightly longer is then placed over the assembly so that it rests on the rigid supports.  Following 
standard practice, the assembly is then vacuum bagged, evacuated, and infused with resin that is 
then cured.  Finally, the part is debagged and trimmed to size.
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Figure 1.  A top view of the first setup for fabricating a composite part with a low volume 
percentage of reinforcement fibers.  Legend:  1-rigid base plate, 2-cut fabrics, 3-rigid 
spacers, 4-release fabric and transfer medium, 5-fill line, and 6-vacuum line. 

Invariably, a small space or gap is left between the cut fabric stack (2) and the rigid supports (3) 
in figure 1.  It is possible for resin to flow preferentially through this space to the vacuum side 
instead of flowing through the fabric stack, a process known as “racetracking.”  Since the 
resulting part is not completely filled with resin, it is not the desired product.  It is thus important 
that this space be minimized, or that the racetracking be otherwise prevented.  It is possible to 
avoid this racetracking altogether by cutting the fabrics to a particular pattern and supporting the 
cover plate in a slightly different manner.  For a flat panel, the fabrics are first cut as shown in 
figure 2.  The central square region in the figure represents the intended size of the final part.  
Referring to figures 3 and 4, the desired number of plies of cut fabrics (1) are then stacked on  
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Figure 2.  The basic pattern for cutting the fabrics for fabricating a 
composite part by the setup in figures 3 and 4.  The intended part 
size is that of the inner box.   

a rigid bottom plate (7).  The fabrics are typically 2 in larger on each side than the desired part 
size.  The notches in the fabric are typically 1.5 in deep and 1 in wide.  These notches will hold 
rigid supports (3) (typically metal) that will support a rigid cover plate (4) (also typically metal).  
Rigid support spacers (3) that will determine the thickness of the panel are placed in the notches 
on in the fabric plies.  A rigid cover plate (4) is placed over the spacers for simple vacuum resin 
transfer molding.  One or more layers of a porous release material (not shown), cut to the pattern 
of figure 2 could be placed over the fabrics if desired, for example, to give the upper surface a 
slight texture to enhance paint adhesion.  Alternatively, for a SCRIMP—like process, one or 
more layers of a porous release material cut to the pattern of figure 2 are first placed over the cut 
fabrics.  A layer of an appropriate transfer medium material is placed over the release material.   

This is cut to the size of the finished part plus a little extra on one side to join to the fill line, as 
shown in figures 3 and 4.  A rigid cover plate (4) is then placed over the metal spacers.  A resin 
fill-line (5) and a vacuum line (6) and are placed adjacent to the part as in figures 3 and 4, and 
the entire assembly is vacuum bagged.  The bag should clamp down hard on the exposed fabric 
edges (the portions of the cut fabrics visible in the top view in figure 3) right up to the edge of
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Figure 3.  Top view of the second setup for fabricating a composite part with a low volume percentage 

of reinforcement fibers.  Legend:  1-cut fabrics, 2-transfer medium over release fabrics,  
3-rigid spacers, 4-rigid cover plate, 5-fill line, 6-vacuum line, and 7-rigid bottom plate. 

 
Figure 4.  Side view of the second setup for fabricating a composite part with a low volume percentage 

of reinforcement fibers.  Legend:  1-cut fabrics, 2-transfer medium over release fabrics, 3-rigid 
spacers, 4-rigid cover plate, 5-fill line, 6-vacuum line, and 7-rigid bottom plate. 
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the cover plate.  This helps prevent racetracking of the resin and helps ensure a complete  
fill-out of the fabric.  It is also necessary to stuff several strips of fabric into the exposed edges of 
the fabric stack at regular intervals.  These strips are the size of the exposed edges and are 
inserted to prevent the vacuum from pushing down the fabric under the cover plate.  The number 
of such strips required will vary with the part, but enough should be inserted so that the edges 
will be about as thick as the support spacers (3) when it is placed under vacuum.  This also 
increases the impedance to flow at the edges of the part and thus helps eliminate racetracking.  
The bag is then evacuated and resin is infused into the part.  The part is then cured, cooled if the 
resin required heat to set, debagged and trimmed to size, following standard practice. 

Although the previous description is for a flat plate, it should be clear that a shaped part could 
also be made by this method.  All that is needed are appropriately contoured rigid male and 
female top and bottom plates and some rigid spacers.  A closed mold is not required. 

For a large panel the new method is modified slightly as shown in figures 5 and 6.  The 
reinforcement fabrics (1) and release fabric (4) are cut to the pattern in figure 7 and placed on the 
bottom plate (7).  These fabrics will have as many slots for spacers as needed.  The transfer 
medium (not shown) is cut 1/2 in to 1 in smaller than the part on all sides and placed over the 
release fabrics.  The cover plate (4) is in two sections (or more if the part is very large).  Support 
spacers (3) are placed in the notches in the fabric stack.  The fill line (5) is placed over the space 
between sections in the cover plates (4).  The vacuum lines (6) are placed at the edges of the 
panel.  Extra strips of fabric are placed within the exposed edges of the stack of cut fabrics.  The 
part is then vacuum bagged and infused with resin that is then cured.  Finally, the part is 
debagged and trimmed to size. 

With fabrics such as a 24-oz 5 × 5 woven roving, fiber volume percentages from ~37% to 50% 
were obtained by this method.  Attempts to make lower volume fraction composites with this 
fabric resulted in composites with unacceptably high concentrations of voids.  Lower volume 
percentage composites require the use of a chopped strand mat or other high bulk factor 
reinforcements or preforms. 

2.3 Examples 

A number of samples were fabricated using the Vmin process in order to demonstrate reduction 
to practice.  In the first example, six plies of 24-oz per square yard 5 × 5 S-2 glass woven roving 
~16-in square were cut in the pattern of figure 2.  Aluminum support spacers, each 0.25 in thick, 
were placed in each of the four notches in the fabric.  Two plies of Richmond Products type  
A-8888 release fabric* were cut to the pattern of figure 2 and placed over the fabrics.  A layer of 
50% shade awning mesh† was then placed on top of the stack to serve as a distribution medium.  

                                                 
*Northern Fiberglass Sales, Inc., P.O. Box 2010, Hampton, NH 03843-0598. 
†Roxford Fordell, 16 Pelham Davis Circle, Greenville, SC 29615. 
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Figure 5.  Top view of a modification of the setup in figures 3 and 4 for fabricating a large composite part 
with a low volume percentage of reinforcement fibers.  Legend:  1-cut fabrics, 2-release fabrics, 
3-rigid spacers, 4-rigid cover plate, 5-fill line, 6-vacuum line, and 7-rigid bottom plate. 

It was cut to the size of the final part and plus one inch on the one side that abutted the fill line.  
This was then covered with a 13-in square, 0.625-in thick aluminum cover plate that rested on 
the four 0.25-in thick aluminum support spacers.  Two strips of the woven roving were placed 
within the exposed edges of the stack and two more of the woven roving strips were placed over 
the top of the edges.  A fill line was made by taking a 12-in piece of 0.5-in inner diameter 
polyethylene spiral electrical wire wrap* that had been stretched to a length of 16 in.  This was 

                                                 
*Panduit Type T62F, obtained from Graybar Electric, 43 Boulden Blvd., P.O. Box 900, New Castle, DE 19720. 
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Figure 6.  Side view of a modification of the setup in figures 3 and 4 for fabricating a large composite part 

with a low volume percentage of reinforcement fibers. Legend:  1-cut fabrics, 2-release fabrics, 
3-rigid spacers, 4-rigid cover plate, 5-fill line, 6-vacuum line, and 7-rigid bottom plate. 

 
Figure 7.  The basic pattern for cutting the fabrics for fabricating a large composite part by the setup in 

figure 5.  Cut-outs for four additional spacers are shown. 

then wrapped with several layers of the 50% shade awning mesh material.  One inch of the spiral 
wrap was wrapped around a piece of 0.5-in OD by 0.375-in ID polyethylene tubing at the end 
nearest the resin source.  A similar piece of spiral electrical wire wrap was wrapped with several 
layers of type 7781 E-glass fabric and joined to a piece of polyethylene tubing for a vacuum line.  
The fill and vacuum lines were put in place and the assembly was then vacuum bagged and 
infused with polyester resin* and cured.  After the part had cooled, the edges were trimmed, 
leaving a 12-in square composite plate 0.197 in thick, and had a fiber volume percentage of 
38.4% ± 0.6% (0.033 in/ply).   

A part made by conventional SCRIMP using 10 plies of the fabric was 0.249 in thick and had a 
fiber volume percentage of 50.6% ± 0.15% (0.0249 in/ply). 

Figure 8 shows the various materials used in the process—the A8888 release fabric (1), 40% 
shade awning mesh (2), vacuum line (3), composed of polyethylene tubing and glass fabric 
covered electrical spiral wrap, a fill line (4) composed of the polyethylene tubing and spiral 
wrap, and vacuum bagging material (5).
                                                 

*Type E-701, Alpha Owens - Corning, Valparaiso, IN. 

2
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Figure 8.  The materials used in the V-min process:  (1) A8888 release fabric, (2) 40% shade awning 

mesh, (3) vacuum line, (4) composed of polyethylene tubing and glass fabric covered 
electrical spiral wrap, a fill line, and (5) composed of the polyethylene tubing and spiral 
wrap, and vacuum bagging material. 

In a second example, 15 plies of 8.8-oz per square yard style 6781 S-2 glass fabrics were cut to 
the pattern of figure 2.  As in figures 3 and 4, the cut fabric plies were covered with release 
fabrics, distribution medium, and an aluminum cover plate supported by four 0.25-in thick 
aluminum spacers.  Ten additional strips of cut type 6781 fabric were stuffed at regular intervals 
into the exposed edges of the fabric.  Fill and vacuum lines were put in place and the assembly 
was vacuum bagged, infused with polyester resin, cured and debagged as in the previous 
example.  The resulting part had a glass content of 36.4 ± 0.2%.  An identical panel was also 
made from 15 plies of the same glass fabric by the method in figure 1.  The parts were 
translucent, indicating a low void content.  Samples prepared by SCRIMP typically had  
44% ± 1% glass by volume. 

In a third example, 15 plies of the type 6781 S-2 glass fabric were cut 11.5-in square and stacked 
as in figure 1.  The plies were then covered with the release fabric and distribution medium.  
Two aluminum support spacers, 0.25 in thick × 2 in wide × 12 in long, were placed adjacent to 
the part. A 13-in square by 0.625-in thick cover plate was placed on top of the spacers.  Fill and 
vacuum lines as in the previous examples were placed adjacent to the fabrics as in figure 1.  The 
part was infused with a polyurethane resin, cured, cooled, and trimmed to size.  It was found to 
contain 33.3% ± 0.2 % glass by volume, as expected.
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In a fourth example, 4 plies of a chopped strand E-glass mat were cut as in figure 2, put in place, 
vacuum bagged and infused as in the two previous examples.  It contained 30.0 ± 0.5 volume % 
glass.  A 4-ply part made by conventional SCRIMP using this glass mat contained 41.9% ± 0.4% 
glass by volume. 

All physical properties of composites that depend on the volume fraction of reinforcement fiber 
can be controlled by using the Vmin process.  This includes electrical, mechanical, and thermal 
properties.  The process also controls the thickness of the part through the use of spacers. 

U.S. patent number 6,406,660, “Method for producing polymer matrix composites having a low 
volume percentage of reinforcement fiber and controlled thickness,” was issued in June 2002. 

3. Volume Control VARTM 

A practical and reproducible method of fabricating a composite with a relatively low Vf was 
described in the previous section.  However, a high Vf is more desirable in many applications.  It 
is also desirable to have a composite in which Vf is uniform throughout the sample.  In particular, 
the gradient in Vf from the top of the sample to the bottom that is often present in a panel 
fabricated by SCRIMP should be absent.  These factors pointed to the need for a more general 
method of Vf control via an easy to implement VARTM process. 

A feeler gauge with 0.001-in sensitivity was used to monitor the thickness of a part being made 
by SCRIMP with resin infused from one end.  The thickness of the part, measured near the fill 
line, remained unchanged until the part had almost filled out.  Although most of the part is 
generally filled out at this point, after the center of the part is done.  The thickness of the part 
then started to increase as additional resin was added to finish filling the edges of the part 
farthest from the fill line.  This indicated that stopping the infusion before the part was 
completely filled out would lead to a part with the maximum Vf  obtainable using only one 
atmosphere of pressure on the part in a vacuum bag.  Subsequent experiments established that 
this Vf was typically 0.59 and 0.60.  It is also evident that the uniformity of the section of a 
composite panel that is infused this way will be as good as it can be and is limited by the 
uniformity of the plies of fabric used. 

The rate of flow of resin into the part is limited by the distribution medium and the thickness of 
the part in SCRIMP.  The resin must flow across the part as well as through the part.  An 
alternative is to quickly distribute the resin across the surface of the part and allow it to soak 
through.  This is the basis of another processing method known as FASTRACK.  FASTRACK 
overfills the part during the process, which necessitates vacuuming off the excess resin.  It also 
leaves a very nonuniform backside on the part.  This nonuniformity is not acceptable in many 
applications.
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In order to overcome these difficulties, the process shown schematically in figure 9 was 
developed.  The cut fabrics are placed on a plate to which mold release had been applied, 
covered with a layer of release fabric (omitted in the figure), and two vacuum lines are placed on 
several plies of scrap fabric hat are abutted to the bottom of the part.  The reusable processing 
apparatus is placed on top of the part as shown in the sketch.  The assembly is vacuum bagged 
and the part is then infused with resin. 
 

 

Figure 9.  A sketch of the second new VARTM process. 

Processing apparatus consisting of a top and a bottom plate is shown in figure 10.  The top plate, 
at the left in the figure, has a hole in the center for resin input and a slot about 0.5 in wide and 
0.125 in deep that stops ~0.5 in from the edge of the plate. The bottom plate at the right in the 
figure has a series of 0.0625-in slots milled as shown.  These slots stop ~1 in from the sides of 
the part and 2 in from the ends (with the vacuum lines).  The part with the wider slot is placed 
perpendicular to the other. 

A vacuum bagged part ready for resin infusion is shown in figure 11.  This processing method 
worked very well; all parts filled out rapidly without dry spots.  The surface finish of the parts 
was excellent; the resin infusion slots left marks on the part that could be seen but not felt, even 
with soft and pliable type 7781 E-glass fabrics.  It can be seen that the edges of the metal 
apparatus were covered with a blue tape.  This prevents the edges of the metal apparatus from 
cutting through the vacuum bag. 

No attempt was made to optimize the size of the slots because the fill rate was quite rapid for the 
parts that were fabricated.  The speed was limited by the soak through time in all parts that were 
fabricated.  One sample was made using a resin with sufficient catalyst to reduce the pot life to 
~5 min.  A very satisfactory 0.25-in thick part was also made using a polyurethane resin with a 
viscosity of 2200 cP at the 140 ºF processing temperature.
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Figure 10.  Aluminum processing apparatus used in the second new VARTM process. 

 

Figure 11.  A part ready for resin infusion using the second new process.
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The initial processing apparatus was made from aluminum.  A modest effort was required to 
clean this apparatus for reuse.  Subsequent processing apparatus for use with hard resins was 
made from nylon ~0.1 in thick for the two slotted parts.  A metal plate with a fill line attachment 
was then placed over the two nylon parts.  This could be twisted easily to remove solidified resin 
from the slots after processing and the remaining solidified resin could be wiped off with a rag.  
For processing soft resins such as polyurethanes, the metal apparatus was better; it was possible 
to grab one end of the cured excess resin and pull it out in one piece, leaving clean apparatus 
behind. 

The process just described was demonstrated on relatively small (typically 1 ft2) flat plates. 
Extension of the process to larger parts should be straightforward.  Several sets of apparatus 
could be used that could be infused with resin sequentially if this proved to be necessary.  
Extension to shaped parts is also possible.  Apparatus for infusing a 5-sided box was designed 
but not tested since the need for the box disappeared.  Rounded parts would require appropriately 
designed tooling, but this tooling could be made. 

Fiber volume fractions of 0.58 to 0.60 can be obtained by not completely filling out the edges of 
the part, as previously indicated.  However, a better method is to add some spacers under the 
outermost plate and then clamp the top and bottom plates together using C-clamps.  For low fiber 
volume fractions, this process reproduces Vmin results.  It also allows for fiber volume fractions 
as high as 0.60 using only atmospheric pressure.  Although the spacers are not strictly necessary 
for high fiber volume fractions, they do make it easier to clamp the part uniformly. 

One advantage to having the part clamped in this manner is that once the part is filled, the 
process is complete.  The vacuum can be turned off and the part allowed to cure in the clamped 
mold. 

Panels made using these processes were used in a study of the microwave dielectric properties of 
polyester and vinylester matrix glass reinforced composites.3  Very little sanding was required to 
obtain the flatness and parallelism for these samples with minimal depth gradient of volume 
fraction.  In contrast, samples made by SCRIMP typically had to have the top 40% to 50% 
sanded off before consistent dielectric constant measurements were obtained because of the 
extensive Vf gradients. 

High Vf composites could also be made by the Vmin process with appropriate spacers and 
clamps.  The process previously described is faster and possibly easier, however.

                                                 
3Spurgeon, W. A.  Free Space Measurement of the Dielectric Constants of Constants of Some Polyester, Vinyl-Ester and 

Cyanate-Ester Resins and Their Glass Reinforced Composites; ARL-TR-3083; U.S. Army Research Laboratory:  Aberdeen 
Proving Ground, MD, 2003. 
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4. Conclusions 

Two new VARTM processes have been described that allow control of the fiber volume fraction, 
thickness, and uniformity of the composite parts.  The processes also meet the other criteria 
described in the introduction. 
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Appendix.  SCRIMP 

Seeman’s Composite Resin Infusion Molding Process is shown in figures A-1–A-4.  The dry 
fabrics were first cut to size and laid out on a plate to which mold release has been applied.  They 
were then covered with one or more sheets of a porous release fabric such as the green 
Richmond A8888 release fabric shown in figure A-1.  A layer of transfer medium, such as the 
50% shade awing screen also shown in figure A-1, is then placed over the part.  The transfer 
medium was cut ~1 in smaller than the part on the vacuum side.  This forced the resin to flow 
down through the part, thus completely filling the part before the resin reached the vacuum line.  
The transfer medium was also cut ~0.5 in smaller than the part on the two sides perpendicular  
to the fill and vacuum lines.  This prevented the development of a low impedance path  
(a “racetrack”) along the sides of the part.  A fill line, made from stretched 0.5-in ID Panduit 
plastic electrical wrapping (part number T62F) or from a stretched metal spring and covered with 
several layers of the transfer medium, is placed adjacent to the part.  A vacuum line, made from 
the spiral wrapping or metal spring covered with several layers of 8.8 oz was placed ~6 in away 
from the other side of the part on a piece of scrap glass fabric that abutted the part (figure A-2).  
Figure A-3 shows a sketch of the layers of material as viewed from the side.  The entire 
assembly was then vacuum bagged as shown in figure A-4 using a thin plastic bagging material 
such as 0.002-in thick CAPRAN.*  The part was then infused with resin.  After the resin cured, 
the part was debagged and trimmed tom size. 

As an example of the types of problems that can occur with this process, a multilaminate panel 
was fabricated using 20 plies of type 6781 S-2 glass, with every fourth ply separated by an 
0.003-in thick piece of porous glass coated Teflon release fabric.  Each ply of glass fabric was  
6 in wide × 30 in long.  The part was infused with resin as described previously.  The sample was 
cured and dissected.  Thickness measurements were made at five locations along each 4-ply 
laminate.  The results are presented in table A-1.  Both through the thickness and end to end 
gradients are evident. 

Table A-1.  Thickness measurements in mils for the multilaminate panel. 

Position Laminate 1 Laminate 2 Laminate 3 Laminate 4 Laminate 5 
 (bottom)  (center)  (top) 
1 (fill) 48 48 49 49 50 
2 45 45 46 47 49 
3 (center) 43 43 44 45 45 
4 42 43 43 45 46 
5 (vacuum) 41 42 42 44 46 

 

                                                 
*Northern Fiberglass Sales, Inc., P.O. Box 2010, Hampton, NH 03843-0598. 
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Figure A-1.  The cut fabrics are covered with a porous release fabric (green material) and a transfer 

medium (black material).
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Figure A-2.  A fill line (left) is placed next to the part, and a vacuum line (right) is placed several 

inches away on a thin (50 mil) layer of scrap fabric that abuts the part. 
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Figure A-3.  A sketch showing the layers of material viewed from the side.
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Figure A-4.  The assembly is then vacuum bagged and infused with resin.
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   A ZIELINSKI 
  AMSRD ARL WM BD 
   B FORCH 
   R LIEB 
  AMSRD ARL WM BF 
   S WILKERSON 
  AMSRD ARL WM M 
   J MCCAULEY 
  AMSRD ARL WM MA 
   L GHIORSE 
   S MCKNIGHT 
   E WETZEL 
  AMSRD ARL WM MB 
   T BOGETTI 
   J BROWN 
   L BURTON 

   R CARTER 
   R EMERSON 
   R KASTE 
   B POWERS 
   J TZENG 
  AMSRD ARL WM MC 
   R BOSSOLI 
   E CHIN 
   S CORNELISON 
   D GRANVILLE 
   M MAHER 
   F PIERCE 
   E RIGAS 
   W SPURGEON 
  AMSRD ARL WM MD 
   J CAMPBELL 
   B CHEESEMAN 
   P DEHMER 
   S GHIORSE 
   W ROY 
   J SANDS 
   D SPAGNUOLO 
   T TAYLOR 
   S WALSH 
   J WOLBERT 
  AMSRD ARL WM RP 
   J BORNSTEIN 
   C SHOEMAKER 
  AMSRD ARL WM T 
   B BURNS 
  AMSRD ARL WM TA 
   W BRUCHEY 
   M BURKINS 
   W GILLICH 
   B GOOCH 
   T HAVEL 
   C HOPPEL 
   E HORWATH 
   J RUNYEON 
   M ZOLTOSKI 
  AMSRD ARL WM TB 
   P BAKER 
  AMSRD ARL WM TC 
   R COATES 
  AMSRD ARL WM TD 
   S SCHOENFELD 
  AMSRD ARL WM TE  
   J POWELL 
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INTENTIONALLY LEFT BLANK. 




